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Abstract

The J-integral analysis is presented for the interaction problem between a semi-in®nite interface crack and subin-

terface matrix microcracks in dissimilar anisotropic materials. After deriving the fundamental solutions for an interface

crack subjected to di�erent loads and the fundamental solutions for an edge dislocation beneath the interface, the

interaction problem is deduced to a system of singular integral equations with the aid of a superimposing technique.

The integral equations are then solved numerically and a conservation law among three values of the J-integral is

presented, which are induced from the interface crack tip, the microcracks and the remote ®eld, respectively. The

conservation law not only provides a necessary condition to con®rm the numerical results derived, but also reveals that

the microcrack shielding e�ect in such materials could be considered as a redistribution of the remote J-integral. It is

this redistribution that does lead to the phenomenological shielding e�ect. Ó 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Due to the potentialities of reducing weight and the capacities of optimizing the structural strength and
sti�ness, laminated ®ber-reinforced composite materials are widely used in light structures and applied to
replace many metallic components usually used before. However, the mechanical behaviors of such ma-
terials in¯uenced by the ®ber and matrix interaction, the matrix microcracks and the multi-ply con®gu-
ration show very complicated features, which have challenged designers with a new class of problems. One
particular area, which has received considerable attention in the past decade, has been their low tolerance to
interfacial damage, and the other is concerned with the microdefects such as microcracks, microvoids, and
microinclusions. The occurrence of these types of damage, which are frequently caused by impact or other
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sources, are common and unavoidable during manufacturing, maintenance, and service of the light
structures.

To date, although many signi®cant progresses have been made in solving the interface crack problems in
both dissimilar isotropic materials and dissimilar anisotropic materials (Wang and Choi, 1983a,b;
Hutchinson et al., 1987; Rice, 1988; Suo, 1990; Ting, 1986, 1990; Gao, 1991; Lu and Lardner, 1992; Chen
and Hasebe, 1994a,b), the in¯uence of microcracks in the process zone near the tip of an interface mac-
rocrack in dissimilar anisotropic materials on the tip parameters remains inadequately treated.

On the other hand, recent investigations reveal that the well-known J-integral (Rice, 1968) plays an
important role in treating the interaction problem between a macrocrack and near-tip microcracks in brittle
materials or in bimaterial isotropic solids (Chen, 1996; Zhao and Chen, 1997). It is found that there exists
an inherent relation among three values of the J-integral, respectively, induced from the macrocrack tip, the
microcracks near the tip, and the remote stresses. It seems that the J-integral should play the similar role
when the interaction problem in dissimilar anisotropic materials is considered.

The aim of this paper is to investigate the interaction behaviors between a semi-in®nite interface crack
and multiple subinterface matrix microcracks in the near tip process zone in dissimilar anisotropic mate-
rials. In Section 2, the fundamental solutions, respectively, for a semi-in®nite interface crack subjected to
di�erent kinds of loads and for an edge dislocation beneath the interface in a dissimilar anisotropic ma-
terials are given. In Section 3, the pseudo-traction method is combined with the edge dislocation method
(abbreviated as PTEDM) to solve the interaction problem. A superimposing technique is adopted to deduce
the interaction problem mentioned above to a system of singular integral equations whose solutions could
be given numerically. In order to con®rm numerical results and to avoid mistakes in the manipulations, the
J-integral analysis is performed in Section 4 by introducing three di�erent closed contours specially de®ned.
In Section 5, numerical results are given for a composite material whose anisotropic material constants are
used by Sih and Chen (1981). The derived results reveal that a consistency check based on the J-integral
analysis really exists, which not only con®rms the numerical results themselves, but also shows the redis-
tribution nature of the remote J-integral. Finally, major conclusions derived in Part I of this series are
summarized.

2. Fundamental formulations in dissimilar anisotropic materials

Recently, the interface crack problem in anisotropic materials has been studied by Suo (1990). It is well
known that under plane stress or plane strain conditions, the elastic ®eld in an anisotropic material could be
represented in terms of two complex functions f1�z1� and f2�z2�, each of which is holomorphic in its ar-
gument zj � x� ljy; �j � 1; 2�. Here, lj denotes two distinct complex numbers with positive imaginary
parts. They could be determined as the roots of a fourth-order characteristic equation (Lekhnitskii, 1963).
Using these holomorphic functions, the representations of displacements ui, stresses rji, and resultant forces
Ti could be put in the following forms:

ui � 2Re
X2

j�1

Aijfj�zj�
" #

; Ti � ÿ2Re
X2

j�1

Lijfj�zj�
" #

; r2i � 2Re
X2

j�1

Lijf 0j �zj�
" #

;

r1i � ÿ2Re
X2

j�1

Lijljf
0
j �zj�

" #
�i � 1; 2�; �1�

where the over prime is designated as the derivative with respect to the associated arguments, and L and A
are two 2� 2 complex matrices depending on elastic constants (Suo, 1990)
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L � ÿl1 ÿl2

1 1

� �
; �2�

A1j � s11l2
j � s12 ÿ s16lj

A2j � s21lj � s22=lj ÿ s26
�j � 1; 2�; �3�

where, lj satis®es the following fourth-order characteristic equation:

s11l
4 ÿ 2s16l

3 � �2s12 � s66�l2 ÿ 2s26l� s22 � 0: �4�
Eqs. (2)±(4) are valid for plane stress deformation, while the corresponding ones for plane strain de-

formation could be given by using the following change of compliances

~sij � sij ÿ si3sj3=s33: �5�
Suo (1990) has introduced a positive de®nite Hermitian matrix B

B � iALÿ1; �6�
where i � �������ÿ1

p
. For interface problems in dissimilar anisotropic materials in which materials 1 and 2

occupy the upper and lower half planes, respectively (Fig. 1), another positive-de®nite Hermitian matrix H

involving bimaterial elastic constants is de®ned as follows (Suo, 1990):

H � B1 � B2; �7�
where subscripts 1 and 2 are attached to the upper and lower materials, respectively, the over bar denotes
the corresponding complex conjugate.

Furthermore, Suo (1990) has also de®ned the following function vector f�z�:
f�z� � f1�z�; f2�z�� �T; �8�

where f1�z� and f2�z� describe the functions for the upper and lower materials, respectively.
Once the solution of f�z� is derived for a given boundary value problem, a replacement of z1 or z2 should

be made for each component function to calculate ®eld quantities from Eq. (1). Moreover, the set of vectors
along the interface is given as follows:

Fig. 1. (a) A pair of normal and tangential concentrated tractions acting on an interface macrocrack. (b) An edge dislocation near the

interface.
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ux � uj�x; 0�
� 	 � Af�x� � A�f�x�;

t�x� � r2j�x; 0�
� 	 � Lf 0�x� � L�f 0�x�; �9�

where the x-axis is along the interface.

2.1. Fundamental solution for an interface crack

The formulations presented above are used to derive the fundamental solution for a semi-in®nite in-
terface crack under concentrated tractions as shown in Fig. 1(a). Without going into detail (Appendix A),
the following Hilbert problem is deduced:

h��x� �H
ÿ1

Hhÿ�x� � t0�x�; x 2 C; �10�
where C is the crack surface, the complete solution could easily be given as follows:

h�z� � h1�z�w� h2�z�w; �11�
where

h1�z� � v�z�
2pi

Z
c

t01�x�dx
v��x��xÿ z� ; �12�

h2�z� � v�z�
2pi

Z
c

t01�x�dx
v��x��xÿ z� ; �13�

t01 � wHt0�x�
wHw

; �14�

v�z� � zÿ1=2ÿie; �15�
and the vector w and the index e satisfy the following equation:

Hw � e2peHw: �16�
It should be pointed out that for the case in Fig. 1(a),

t0�x� � �0; Pd�xÿ g��T for the traction P ; �17a�

t0�x� � �Qd�xÿ g�; 0�T for the traction Q; �17b�
where g is the distance of the traction point from the origin (Fig. 1(a)).

Therefore, the stresses at any point z below the interface (Fig. 1(a)) induced from the tractions P and Q,
respectively, could be evaluated by using Eqs. (11), (A.7), and (1), without any di�culty. As well-known
(Zhao and Chen, 1997; Chen 1996), the stresses could be considered as the in¯uence functions or the kernel
functions in the boundary element method, which will be denoted below by g0

nn and g0
nt for the traction P

and g0
tn and g0

tt for the traction Q, respectively.

2.2. Fundamental solution for an edge dislocation

An edge dislocation below the interface is shown in Fig. 1(b). The potentials fk modeling a dislocation
singularity near a bimaterial interface in an anisotropic body are proposed by Miller (1989)
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f 0k�z� �
Bk

zÿ z0k
ÿ
X4

j�1

bkj

X2

i�1

mji
Bi

zÿ z0i
�18�

in which z0k � x0 � lky0 represents a speci®ed point z0�x0; y0� locating the singularity, and

b1j

b2j

b3j

b4j

2664
3775 �

A11 A12

A21 A22

� �
2

ÿA11 ÿA12

ÿA21 ÿA22

� �
1

L21 L22

L11 L12

� �
2

ÿL21 ÿL22

ÿL11 ÿL12

� �
1

2664
3775
ÿ1

�19�

m1k � �A1k�2; m2k � �A2k�2; m3k � �L2k�2; m4k � �L1k�2; �20�
where the formations ���1 and ���2 correspond to the upper and the lower materials, respectively.

In addition, Bk�k � 1; 2� satis®es the following equation (Miller, 1989):

Im�B1 � B2� � 0;

Im�l1B1 � l2B2� � 0;

Im�A11B1 � A12B2� � ÿ Bx

4p
;

Im�A21B1 � A22B2� � ÿ By

4p
;

�21�

where Bx and By are the displacement discontinuities across the dislocation line in the x and y directions,
respectively.

From Eqs. (1) and (18), the stresses ®eld due to the edge dislocation at any point z � z0 � neib near the
interface are formulated in a polar coordinate system (Fig. 1(b)),

rhh � irqh � K1�n; g; b� � K3�n; g; b; y0� � K2�n; g; b� � K4�n; g; b; y0�; �22�
for any point z � z0 � geib, and

rhh � irqh � K5�n; b; x0; y0; g1;b1; x01; y01� � K7�n; b; x0; y0; g1; b1; x01; y01�
� K6�n; b; x0; y0; g1; b1; x01; y01� � K8�n; b; x0; y0; g1; b1; x01; y01�;

�23�

for any point z � z01 � g1eib1 . Moreover, it should be emphasized that b1 � 0, x01 � 0, and y01 � 0, when
point z falls into the interface, where the eight functions (K1 � K8) are given in Appendix B. The in¯uence
functions or the kernel functions used below could be evaluated by Eqs. (22) and (23).

2.3. Remote loading conditions

Consider a semi-in®nite interface crack in an in®nite dissimilar anisotropic material loaded by the remote
stress intensity factors K11 and K12 , the potentials for the two half spaces are

L1f 01�z� �
epeKziew� eÿpeKzÿiew

2�2pz�12 cosh pe
�z 2 material 1�; �24a�

L2f 02�z� �
eÿpeKziew� epeKzÿiew

2�2pz�12 cosh pe
�z 2 material 2�; �24b�

where K � K11 � iK12 .
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When calculating the ®eld quantities via Eq. (1), it is necessary to replace z by zj � x� ljy, respectively,
for each component of f �z� in Eq. (24a) or Eq. (24b) as treated by Suo (1990).

Consequently, the residual stresses to be released on the location of subinterface crack are given as

p � 2Re�f 01�z1� � f 02�z2��;
q � ÿ2Re�l1f 01�z1� � l2f 02�z2��;

�25�

where f 01�z1� and f 02�z2� are given by Eq. (24a) or Eq. (24b).

3. Superimposing technique and singular integral equations

Consider N subinterface microcracks near the tip of a semi-in®nite interface macrocrack (Fig. 2(a)).
Here, the prescribed stress intensity factors K11 and K12 are taken to specify the applied remote stress
®eld. Using the pseudo-traction method proposed by Horii and Nemat-Nasser (1985), the problem shown
in Fig. 2(a) is decomposed into N � 2 subproblem (Fig. 2(b)±(d)), each of which contains one single
crack. The unknown normal tractions P0�t�; Pl�sl�and shear tractions Q0�t�;Ql�sl� on the crack faces are
the so-called pseudo-tractions to be determined. Furthermore, each subinterface crack with length
2al �l � 1; 2; . . . ;N� could be modeled by edge dislocation distributed continuously at the crack location.
Using the superimposing technique, the following integral equations are reduced as Zhao and Chen
(1997) did, in which Pl�xl� and Ql�xl� are expressed in the form of continuously distributed dislocations
(Lu and Lardner, 1992).

Fig. 2. Method of superimposing.
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P0�g� �Re
XN

l�1

Z al

ÿal

K5 nl; bl; x0l; y0l; g; 0; 0; 0� �� � K7 nl; bl; x0l; y0l; g; 0; 0; 0� �

� K6 nl; bl; x0l; y0l; g; 0; 0; 0� � � K8 nl; bl; x0l; y0l; g; 0; 0; 0� ��dnl � 0; �26a�

Q0�g� � Im
XN

l�1

Z al

ÿal

K5 nl; bl; x0l; y0l; g; 0; 0; 0� �� � K7 nl;bl; x0l; y0l; g; 0; 0; 0� �

� K6 nl; bl; x0l; y0l; g; 0; 0; 0� � � K8 nl; bl; x0l; y0l; g; 0; 0; 0� ��dnl � 0; �26b�

Z 0

ÿ1
P0�g�g0

nn;0l�g; gl�dg�
Z 0

ÿ1
Q0�g�g0

tn;0l�g; gl�dg�Re

Z al

ÿal

K1 nl; gl; bl� ��
8<: � K3 nl; gl; bl; y0l� �

� K2 nl; gl; bl� � � K4 nl; gl; bl; y0l� ��dnl �
XN

i�1
i 6�l

Z ai

ÿai

K5 ni; bi; x0i; y0i; gl; bl; x0l; y0l� ��

� K7 ni; bi; x0i; y0i; gl; bl; x0l; y0l� � � K6 ni; bi; x0i; y0i; gl; bl; x0l; y0l� �

� K8 ni; bi; x0i; y0i; gl; bl; x0l; y0l� ��dni

9=; � pl gl� � �26c�

Z 0

ÿ1
P0�g�g0

nt;0l�g; gl�dg�
Z 0

ÿ1
Q0�g�g0

tt;0l�g; gl�dg� Im

Z al

ÿal

K1 nl; gl; bl� ��
8<: � K3 nl; gl; bl; y0l� �

� K2 nl; gl; bl� � � K4 nl; gl; bl; y0l� ��dnl �
XN

i�1
i 6�l

Z ai

ÿai

K5 ni; bi; x0i; y0i; gl; bl; x0l; y0l� ��

� K7 ni; bi; x0i; y0i; gl; bl; x0l; y0l� � � K6 ni; bi; x0i; y0i; gl; bl; x0l; y0l� �

� K8 ni; bi; x0i; y0i; gl; bl; x0l; y0l� ��dni

9=; � ql gl� �: �26d�

In addition, the uniform conditions require thatZ al

ÿal

Bx�nl�dnl � 0;

Z al

ÿal

By�nl�dnl � 0; �27�

and K1;K2;K3;K4;K5;K6;K7; and K8 are given in Appendix B, ÿal < nl < al;ÿal < gl < al l ��
1; 2; . . . ;N�, ÿ1 < g < 0, Bx�n� and By�n� are dislocation density functions; pl�gl� and ql�gl� are given by
Eq. (25).

The integral equation (26) could be solved numerically by using the Chebyshev numerical integration
and the Chebyshev polynomial technique, if B�n� is expressed by the ®rst kind of Chebyshev polynomial as
follows:

Bx�nl� �
1�������������

1ÿ c2
l

p XM

k�0

dkTk�cl�; �28�
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By�nl� � 1�������������
1ÿ c2

l

p XM

k�0

bkTk�cl�; �29�

where ÿ1 < cl � nl=al < 1;ÿal6 nl6 al, dk, bk are coe�cients of the Chebyshev polynomial to be deter-
mined, M indicates the number of the Gauss±Chebyshev collocation points.

Once the Eqs. (26a)±(26d) is solved, the incremental values of the stress intensity factors (SIFs) at the
macrocrack tip and SIFs at both tips of the microcrack could be evaluated.

The stress intensity factor for the semi-in®nite interface crack under arbitrarily distributed loads P0�x�
and Q0�x� de®ned by Suo (1990) is

K � K1 � iK2 � ÿ 2

p

� �1=2

cosh pe
Z 0

ÿ1
�ÿx�ÿ1

2
ÿiet01�x�dx; �30�

t01�x� � wTH�Q0�x�; P0�x��
wTHw

:

w and H are given in Eq. (16). With the solutions of P0�x� and Q0�x� in Eq. (26), K could be calculated by
using the Chebyshev numerical integration method.

For the ®nite subinterface crack l, the stress intensity factor at the right tip �n � al� described by B�n� is

K � K1 � iK2 � �2p�3=2����
al
p

X2

k�1

1� l2
k � e2ib�1ÿ l2

k ÿ 2ilk�
� �

Bk�al�
�1ÿ ilk�eib � �1� ilk�eÿib

(

� 1� lk
2 � e2ib�1ÿ lk

2 ÿ 2ilk�
� �

Bk�al�
�1� ilk�eÿib � �1ÿ ilk�eib

�
�31�

with an analogous expression at the left tip. With the solutions of Eqs. (26), (B.1), (21), (28) and (29), K
could be evaluated numerically.

4. Analysis of the J-integral

It is well known that the J-integral (Rice, 1968) has a de®nite physical signi®cance as the total potential
energy release rate, which is de®ned as

J �
Z

C
�w�e�n1 ÿ rijnjui;1�ds; �32�

where nj signi®es the outer normal of the contour C which is a closed contour to be chosen. Customarily,
for single crack problem, C is generally taken as a smooth curve that starts from one point on the lower face
and ends at another point on the upper face of a crack.

Considering the original problem with three integral contours as shown in Fig. 3, it is easy to get the
following consistent relation among three values of the J-integral, respectively, calculated along the three
integral contours in Fig. 3 (Chen, 1996):

Jt

J1
� DJ

J1
� 1; �33�

where J1 and Jt are given in Appendix C, and

DJ � J �1 cosbÿ J �2 sinb; �34�
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where b is the angle measured from x-axis to x�-axis (Fig. 3), the star denotes the local coordination system,
and J �1 and J �2 are given in Appendix C.

In the above equations, J1; Jt and J �1 can also be expressed in the following forms (Suo, 1990):

J1 � wT�H�H�w K11
�� � iK12

��2=�4cosh2 pe�;
Jt � wT�H�H�w K11

�� � DK1 � i�K12 � DK2�
��2=�4cosh2 pe�;

J �1 � 1
4
�KR�TY�KR ÿ 1

4
�KL�TY�KL;

�35�

where Y� � 2Re�iA�L�ÿ1�, L� and A� are given in Eqs. (2) and (3), KR � �KR
2 ;K

R
1 �T, and KL � �KL

2 ;K
L
1 �T

whose elements K1 and K2 are stress intensity factors, the superscripts R and L refer to the right and left tip
of the microcrack, respectively.

However, the calculation of J �2 should specially be considered since it consists of two parts, one of which
is induced from both microcracks tips and the other from the microcrack traction free faces (Herrmann and
Herrmann, 1981).

The contribution of the right crack tip to the J �2 -integral, namely J tR
2 , should be equal to the energy

release rate specially proposed by Chen and Ma (1997):

J tR
2 � lim

D!0

ÿ1

2D

Z D

0

r�
i1
�Dÿ r�u�

i
�r�dr; �36�

where ri1�r� and ui�r� is the stress at a distance r ahead the right crack tip and the displacement jump at a
distance r behind the right crack tip, respectively:

r�
i1
�r� � X�KR�2pr�ÿ1=2

;

u�i �r� � Y�KR�2r=p�1=2;
�37�

where the superscript R refers to the right tip of the microcrack, and the matrices

X� � ÿRe�D�L�ÿ1�;

D� � L�11l
�
1

L�12l
�
2

L�21l
�
1

L�22l
�
2

" #
:

�38�

Substituting Eq. (37) into Eq. (36), the contribution of the right crack tip to the J �2 -integral is obtained
explicitly as:

J tR
2 � 1

4
�KR�TX�Y�KR: �39�

The contribution of the left tip to the J �2 -integral, namely J tL
2 , could be given in a similar way

J tL
2 � ÿ1

4
�KL�TX�Y�KL: �40�

Fig. 3. An interface macrocrack and a subinterface microcrack with three integral contours.
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Following the conclusion derived by Herrmann and Herrmann (1981), the contribution of the crack
faces to the J �2 -integral could be derived as

J f
2 �

Z a

ÿa
�x� ÿ xÿ�dx; �41�

where x� and xÿ are the boundary values of the strain energy densities on the upper and lower crack faces,
respectively.

Thus, the J �2 -integral calculated along the contour surrounding the complete crack is

J �2 �
1

4
�KR�TX�Y�KR ÿ 1

4
�KL�TX�Y�KL �

Z a

ÿa
�x� ÿ xÿ�dx�: �42�

Using the superimposing technique, the above results can be extended to the multiple subinterface
microcracks situation. Assuming that there exist N subinterface microcracks, the consistent relation (33)
becomes

Jt

J1
�
XN

1

DJ
J1
� 1: �43�

Eq. (43) shows the inherent law of the J-integral whose values are induced from the subinterface mi-
crocracks (

P
DJ=J1) and the tip of the interface macrocrack (Jt=J1), respectively. This has been proved to

be valid in brittle solids and in bimaterial isotropic solids (Chen, 1996; Zhao and Chen, 1997). Moreover, it
provides a necessary condition as well as a powerful tool to examine the numerical results derived by the
technique PTEDM proposed in this part.

5. Numerical results and consistency check

In this section, the properties of the upper material are taken to be an anisotropic material, whose
material constants are E1 � 5:50� 106 psi, E2 � E3 � 1:33� 106 psi, G21 � 0:50� 106 psi, m12 � 0:28,
m23 � 0:36 (Sih and Chen, 1981), while whose ®ber direction is along the interface. On the contrary, the
lower material is taken to be the same material but its ®ber direction is perpendicular to the plane under
consideration (the isotropic case, i.e., E1 � E2 � 1:33� 106 psi). Therefore, matrix microcracks could be
formed near an interface crack tip in the lower material.

Assume a semi-in®nite interface macrocrack interacted with a subinterface matrix microcrack of length
2a in the near-tip process zone as shown in Fig. 4. Here, r is the distance between the macrocrack tip and
the center of the subinterface microcrack, a is the angle between r and the x-axis, and b is the angle of the
subinterface microcrack with respect to the x-axis. The remote stress ®eld is speci®ed by the intensity K11
only. Let b � 30° and 45°, respectively, and r=a � 2:0, the computed values of Jt=J1 and DJ=J1 against the
location angle a are shown in Fig. 5. From Fig. 5, it is found that the consistent relation of the J-integral is
really satis®ed, i.e., the computed values of Jt=J1 plus the computed values of DJ=J1 always equal to unit.
This con®rms that the PTEDM proposed in this paper is e�ective for solving the interaction problem in
dissimilar anisotropic materials, although the di�erent mismatch nature from those by Zhao and Chen
(1997) is taken into account. Moreover, the relation actually provides a powerful tool to check the nu-
merical results no matter how they are derived.

It is also shown that the microcrack has the ampli®cation e�ect on Jt for smaller values of the location
angle (a < 60° for b � 30°, and a < 54° for b � 45°) corresponding to the normalized value Jt=J1 > 1,
while the microcrack has the shielding e�ect on Jt for larger values of the location angle corresponding to
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the value Jt=J1 < 1. Moreover, there is only single neutral shielding angle for each curve at which a
transform from the ampli®cation e�ect to the shielding e�ect occurs.

6. Conclusion

From the foregoing manipulations and discussions, it is concluded that,
(1) PTEDM is really e�ective to solve the interaction problem between a semi-in®nite interface crack and

multiple subinterface microcracks in dissimilar anisotropic materials.
(2) The simple but universal relation (43) found in brittle solids (Chen, 1996) and in bimaterial isotropic

solids (Zhao and Chen, 1997) among three values of the J-integral induced from the interface macrocrack
tip, the subinterface microcracks, and the remote stress ®eld, respectively, is still valid in dissimilar an-
isotropic solids, although the material mismatch nature in¯uences the near-tip stress ®eld.

(3) The microcrack shielding e�ect in dissimilar anisotropic materials could be considered, from the
physical point of view, as the redistribution of the J-integral. As pointed out by Hutchinson (1987), there

Fig. 4. An interface crack and a subinterface microcrack.

Fig. 5. Jt=J1 and DJ=J1 vs. the angle a.
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are two sources of the redistribution of stress in the near-tip stress ®eld of a macrocrack induced from
microcracks. One is due to the reduction in the e�ective elastic moduli and the other is the strain arising
from the release of residual stresses. Obviously, it is this redistribution of stresses in the near-tip stress ®eld
that does lead to the redistribution of the J-integral.

In Part II of this series, numerical results of the interaction between a semi-in®nite interface crack and
multiple subinterface matrix microcracks will be shown in ®gures and tables and studied in detail. The
major behaviors of the interaction against the multiple microcrack con®gurations are discussed.
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Appendix A

According to the continuous condition of the traction across the whole x-axis (see Fig. 1(a)), there is

L1f 01�x� � L1
�f 01�x� � L2f 02�x� � L2

�f 02�x� �A:1�
to facilitate the analytic continuation, Eq. (A.1) is rearranged as

L1f 01�x� ÿ L2
�f 02�x� � L2f 02�x� ÿ L1

�f 01�x� �A:2�
by the standard analytic continuity argument

L1f 01�z� � L2
�f 02�z�; z 2 1: �A:3�

De®ne the displacement jump across the interface as

d�x� � u�x; 0�� ÿ u�x; 0ÿ� �A:4�
with the aid of Eq. (A.3), a direct calculation is given by

t�x� � L1f 01�x� � L2f 02�x�; �A:5�

id0�x� � HL1f 01�x� ÿHL2f 02�x�: �A:6�
According to the continuity of the displacement across the bonded interface as inferred from Eq. (A.6),

implies that L1f 01�x� and L2f 02�x� can be analytically extended to the whole plane except on the crack line and
satisfy

h�z� � L1f 01�z� � Hÿ1HL2f 02�z�; z 62 C; �A:7�
where C is denoted as the crack line. Hence, one can focus on h�z�, and once h�z� is obtained, the full-®eld
solution could be given by Eq. (A.7). In terms of h�z�, the traction (A.5) can be expressed as

t�x� � h��x� �H
ÿ1

Hhÿ�x�; z 2 C �A:8�

Appendix B

K1�n; g; b� � 1

gÿ n

X2

k�1

�1� l2
k � e2ib�1ÿ l2

k ÿ 2ilk��Bk

�1ÿ ilk�eib � �1� ilk�eÿib
;
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K2�n; g; b� � 1

gÿ n

X2

k�1

�1� lk
2 � e2ib�1ÿ lk

2 ÿ 2ilk��Bk

�1� ilk�eÿib � �1ÿ ilk�eib
;

K3�n; g; b; y0� � ÿ 1

2

X2

k�1

X4

j�1

X2

i�1

bkjmji�1� lk
2 � e2ib�1ÿ lk

2 ÿ 2ilk��Bi

�gÿ n�cosb� �y0 � g sinb�lk ÿ �y0 � n sinb�li
;

K4�n; g; b; y0� � ÿ 1

2

X2

k�1

X4

j�1

X2

i�1

bkjmji�1� l2
k � e2ib�1ÿ l2

k ÿ 2ilk��Bi

�gÿ n�cosb� �y0 � g sinb�lk ÿ �y0 � n sinb�li
;

K5�n; b; x0; y0; g1; b1; x01; y01� � 1

2

X2

k�1

�1� l2
k � e2ib1�1ÿ l2

k ÿ 2ilk��Bk

�x01 � g1 cosb1 ÿ x0 ÿ ncosb� � �y01 � g1 sinb1 ÿ y0 ÿ n sinb�lk
;

K6�n; b; x0; y0; g1; b1; x01; y01� � 1

2

X2

k�1

�1� lk
2 � e2ib1�1ÿ lk

2 ÿ 2ilk��Bk

�x01 � g1 cosb1 ÿ x0 ÿ ncosb� � �y01 � g1 sinb1 ÿ y0 ÿ n sinb�lk
;

K7�n; b; x0; y0; g1; b1; x01; y01�

� ÿ 1

2

X2

k�1

X4

j�1

X2

i�1

bkjmji�1� lk
2 � e2ib1�1ÿ lk

2 ÿ 2ilk��Bi

�x01 � g1 cosb1 ÿ x0 ÿ ncosb� � �y01 � g1 sinb1�lk ÿ �y0 � n sinb�lk
;

K8�n; b; x0; y0; g1; b1; x01; y01�

� ÿ 1

2

X2

k�1

X4

j�1

X2

i�1

bkjmji�1� l2
k � e2ib1�1ÿ l2

k ÿ 2ilk��Bi

�x01 � g1 cosb1 ÿ x0 ÿ ncosb� � �y01 � g1 sinb1�lk ÿ �y0 � n sinb�lk
:

�B:1�

Appendix C

J1 �
Z

C1
�wdy ÿ Tiui;1 dl�;

Jt �
Z

Ct

�wdy ÿ Tiui;1 dl�;

DJ �
I

C�
�wdy ÿ Tiui;1 dl�;

�C:1�

J �1 �
I

C�
�w�dy� ÿ T �i u�i;1 dl�;

J �2 �
I

C�
�ÿw�dx� ÿ T �i u�i;2 dl�:

�C:2�
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